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A Spectral Iterative Technique with

Gram-Schmidt Orthogonalization

PETER M. VAN DEN BERG AND WALTER J. GHIJSEN

,4bstracf — Iterative schemes based on the minimization of the integrated

square error are discussed. In each iteration a basis function is generated

in such a way that it is linearly related to the residual error of the previous

iteration. A complete orthogonalization of all of these basis functions leads

to an optimal convergent” scJteme for some choices of the basis functions.

In order to reduce the computer storage needed to store all of the basis

functions, we present an incomplete orthogonalization scheme that still

yields an efficient computational method. In this scheme a limited number

of basis functions has to be stored. Some numericaf resnlts with respect to

some representative field problems illustrate the performance of the vari-

ous versions of the iterative schemes suggested here.

I. INTRODUCTION

The spectral iterative technique (SIT), developed by Bojarski

[1] and Ko and Mittra [2], has been applied to a wide class of

radiation and scattering problems. Convergence problems arising

in the spectral iterative technique, which are serious at times,

have been eliminated by van den Berg [3] by minimizing the

integrated square error in the boundary conditions on the perti-

nent radiating or scattering object. The convergence has substan-

tially been improved by using all available functions of the

previous iteration in the minimization procedure of each iteration

(CST3-scheme [4]). In each iteration of the iterative schemes a

basis function is generated in such a way that it is linearly related
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to the residual error of the previous iteration. MacKay and

McCowen [5] have suggested a full orthogonalization of all basis

functions in order to improve the convergence in an optimum

way. This requires all basis functions to be stored in the com-

puter; hence sufficient computer memory must be available. The

latter authors therefore suggest that a complete orthogonalization

may not be necessary and that the number of basis functions to

be orthogonalized can be limited to a small number. However, in

this case, the convergence can decrease dramatically after a

number of iterations.

In the present paper we discuss an incomplete orthogonaliza-

tion scheme where we take into account a limited number of

basis functions generated in the last few iterations; however, in

contrast to [5], we also use the appropriate estimate of one of the

previous iterations as a function to which all the relevant basis

functions have to be orthogonalized. This maint~ns the speed of

convergence. Further, in one of the most simple forms, the latter

scheme turns out to be equivalent to the contrast-source- tmnca-

tion technique CST3 [4]. The latter is a truly iterative technique,

because it needs the functions of the previous iteration only.

II. Tm OPERATOR J3QUATION

We consider a field computation problem in terms of an

integral equation of the form [4]

~~(x-x’)f(x’)~x’= dx), whenx=D (1)
D

where D is the domain of observation. Then, (1) is equivalent to

Kf =g, when x ED. (2)

Further, we introduce the inner product of two functions f and g

as (the bar denotes a complex conjugate)

(f! g)= JDf(Mx) ~“-$ (3)

while the norm of a function f is defined as IIf II = (f, f )1/’2. We

further introduce the characteristic function Xp ( x) = 1 when

x = D, and XD(X) = O when x ● D’, where D’ is the subdomain

outside the domain D of observation.

Introducing the spatial Fourier transform of a function f as

~= F{ f }, the Fourier transform of the operator expression Kf of

(~) can be written as the product clf the Fourier transforms

K = F{ K( x)} and F{ XD f }; thus the (operator expression can be

written as

Kf =F-l{J&{xl)f }}. (4)

IIL ITERATIVE APPROXIMATION WITH GRAM– SCHMIDT

ORTHOGONALIZArION

In our iterative approximation we construct a sequence of

functions {f., n = 0,1.2,3, . . . } such that the norm of the resid-

wd in the operator eq. (2),

ERRn = (rfi, rn)l/2, with rn = Kfn – g (5)

decreases with increasing n in an optimum way. The procedure

starts with an initial guess f. with the associated residual r.. At

each step of the iterative procedure, we write

f. =fn-1+ %f;, ~==1,2,3, . . . (6)

where, in each step, f; is a correction function and where the

complex parameter a. is chosen such that the error ERR. is
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minimal. This results in a new residual:

rn=rn_l+an Kf~ (7)

and the value of am leading to minimaf error

a.= -( Kfi, rn_l)/llICfi112. (8)

In our iterative scheme, we generate in each iteration a basis

function o,, in such a way that O. is linearly related to the

residual of the previous iteration, say $. = Lrn ~, in which L is a

linear operator. For our relevant operator expression we now

take (according to the contrast-source-truncation techniques [3],

[4])

+n=Lrn-l =F-’{[~]-’F{X~rR_ l}}. (9)

This choice has been inspired by the SIT, suggested by Bojarski

[1] and Ko and Mittra [2], to solve the operator eq. (2) directly

without any error minimization.

One possible way is to take ~~ = $.. Then, we observe that in

the n th iteration the approximate estimate ~. can be written as a

linear combination of ~0 and X = ~~ (rn = 1,2, . . . n) with

expansion coefficients am,

L=fo+ i %.c. (lo)
~=1

However, an optimum solution for the chosen values of f. and

f; (m=l,2,. . , n) is arrived at by linearly combining these

functions with a number of unknown expansion coefficients as

(11)
~=1

and minimizing the integrated square error. Then, we end up

with a linear system of n + 1 algebraic equations for these expan-

sion coefficients a,lfi,, (m= 0,1,..., n) [4].

A. Complete Orthogonalizatlon

For a given set of basis functions, optimaf minimization of the

integrated square error in the n th iteration (leading to a linear

system of n + 1 algebraic equations) is equivalent to a procedure

requiring that (6)–(8) apply while the following orthogonality

relations hold: {Kf~, Kfo ) = O, when n + O. md {K~, Kfj, ) = O,

when n + m. These orthogonalization requirements can be met

by constructing the correction functions f: from the variational

functions +. as follows:

n—l

~=, ‘c
f’= % - Iiofo - E A,,, n!,,, n=l,2,3, ,.. (12)

where the coefficients /3,0 and ~,.l can be found from a

Gram– Schmidt orthogonalization procedure. This scheme is simi-

lar to that of MacKay and McCowen [5]; the only difference is

that we also require the orthogonality relation with respect to the

initial estimate. For a zero initial estimate both schemes are

identical. The disadvantage of this method is that for an increas-

ing number n of iterations we have to store the functions { Kf~,

m=l,2,. ... n } of all previous iterations.

B. Incomplete Orthogonalization

A less optimal procedure, but one involving only a limited

number of correction functions, can be developed by taking the

function Kfi only orthogonal to a limited number of N func-

tions Kf~ which were obtained from only the N previous itera-

tions and which are orthogomd to the function Kfq arrived at in

the iteration with ordinaf number q = n – N – 1. This scheme is

identical to that of (12) in the first N iterations and then

continues as

n—l

f;= +,, -P.qfq - E B.lnf:* n= N+l, N+2, N+3, . . .
m=q+l

~=n–N–l (13)

where the coefficients ~u~ and ~~w can be found from a

Gram-Schmidt orthogonalization procedure. Equations (6)-(9)

and (12), for n=l,2,. -., N, and (13), for n= N+l, N+2,

N + 3,. ... constitute our iterative procedure for a limited num-

ber of N stored functions Kf~. This scheme differs from the

reduced scheme suggested by MacKay and McCowen [5] in the

requirement of the orthogonality with respect to fq. Omitting the

second term in (13) yields the reduced scheme of MacKay and

McCowen. However, this can influence the speed of convergence

negatively. How the convergence vanes as a function of N will be

shown for two specific examples in the next sections.

C. The CST3 Scheme

When we take N equal to 1, (13) can be written as

f:=$n-pn,n-,fn-, -p.,n-,f;-,, n = 2,3,4, . . . . (14)

Using fn ~ = f. ~ – a. ~fj_ ~, which follows from (6), we obtain

f:=% –&-2 fn-l-(&–l – %l&-2)f:-l (15)

and we end up with a scheme that is identical to the CST3

scheme of van den Berg [4]. Note that this is a truly iterative

scheme, because only the functions of the previous iteration are

taken into account. This scheme is originally derived by improv-

ing van den Berg’s CST and CCST scheme [3].

IV. SCATTERING BY A STRIP

One of the canonical problems in electromagnetic and acous-

tics is the two-dimensional scattering of a time-harmonic (time

factor exp ( – iut)) plane wave by a strip (Fig. 1). In electromag-

netic, we consider the scattering of a TM-polarized wave (the

electric field vector is parallel to the edges of the strip). This

problem is identicaf to that of acoustic scattering by a soft strip.

For this problem, Ko and Mittra [2] have presented their spectral

iterative technique (SIT). We apply the iterative schemes of the

former section to solve the one-dimensional operator equation of

this simple example. We take the zero initial guess. To perform

the one-dimensionaf Fourier transforms numerically we use a fast

fourier transform (FFT) routine. All inner products over the

domain D (– a < x < a ) of the strip are calculated numerically

by a simple summation of the function values at the sample

points.

After some normalization we have in the operator equation the

known function g(x) =1, x = D, and the Fourier transform of

the kernel I?= ( k2 – a2 ) - 1/2. In order to cope with this branch

point in the numericaf inverse Fourier transform, we introduce

slight losses in the embedding in accordance with the condition

of causality by taking a complex wavenumber k = (2 n/A)

(1+ O.Oli), where X is the wavelength.

In the numerical computations we use a 4096-point FFT

routine. The number of sample points on the strip (of width 2a)

amounts to 81 and 35 when ka = 5 and 1, respectively. In Figs. 2

and 3, we present the numerical values of the normalized error

ERR. / Ilgll for ka = 5 and ka = 1. The solid lines represent the

results of the incomplete orthogonalization scheme for different

values of N, where N is the number of correction functions taken
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Fig. 1. Plane-wave scattering by a strip.
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Fig. 2. The normalized error ERRn as a function of the number of iterations
for the scattering problem of a strip (ka = 5).

into account. The scheme for N = 1 is the CST3 scheme [4]. The

broken lines represent the results of the incomplete orthogonal-

ization scheme if we enforce the value of /?~~ of the second term

of (13) to zero. In this latter case, the two schemes for N = O and

N =1 coincide with the so-called CST and CCST schemes [3],

respectively.

V. llIfi ELECTRIC FIELD PROBLEM OF AN INTERDIGITAL

TItANSDUf2ER

The analysis of the computation of the electric field excited by

an interdigital transducer in a multilayered structure [6] can be

reduced to the solution of a boundmy integral equation of the

type given in (l). As a test configuration to demonstrate the

performance of the different schemes we consider the electro-

static field problem of aperiodic configuration of two electrodes

having a prescribed potential of opposite polarity in vacuum [7].

In this periodic case, we have to use the periodic Fourier trans-

form. We again apply the iterative schemes to solve the one-

dimensional operator equation of this example. To perform

the one-dimensional Fourier transforms numerically, we use a

1024-point FFT routine. All inner products over the domain

D( L/2 < x < 3L/2 and 5L/2 < x < 7L/2) of the two electrodes
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Fig. 3. The normalized error ERR. as a function of the number of iterations
for the scattering problem of a strip (krr = 1).
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Fig. 4. Interdigital transducer of pmiodic strip electrodes

of width L in a spatial period of the configuration (Fig. 4) are

calculated numerically by a simple sutnmation of the function

values at the -sample points. The number of sample points on

each electrode amounts to 256.

After some normalization we have in the operator equation the

known function g(x) =1 when L/2< x < 3L/2, g(x)= – 1

when 5L/2 < x < 7L/2, and the Fourier transform of the kernel

R=lal-1, a= 2nn/4L (n=O, +1, i:2, . . -). In order to cope

with the singularity a = O in the numerical inverse Fourier trans-

form, we put I?(a) = O, for a = O. Subsequently, the average

value of the potential function K+. obtained over the domain D

of the electrodes is enforced to zero (in view of the asymmetric

excitation). For a detailed description of the generation of the

basis functions O. and corresponding potential K@n, we refer the

reader to [7, table II].

In Fig. 5, we present the numerical values of the normalized

error ERR. / Ilgll. The solid lines represent the results of the

incomplete orthogonalization scheme for different values of N, ,
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Fig. 5. The normahzed error ERR. as a function of the number of iterations
for the electric field problem of an mterdlgital transducer.

where N is the number of correction functions taken into account.

The scheme for N =1 is the CST3 scheme [4], [6]. The broken

lines represent the results of the incomplete orthogonalization

scheme if we enforce the va@e of j3ti~ of the second term of (13)

to zero. In this latter case, the two schemes for N = O and N = 1

coincide with the so-called CST and CCST schemes [3], [7],

respectively.

To conclude we observe that a full orthogonalization of all

basis functions is in many cases no longer necessary when the

incomplete orthogonalization scheme is followed. It appears that

the CST3 scheme is a very efficient computational scheme, in

view of achieving the right balance between computer memory

and computer time. Another approach is one in which the

available computer determines the number of correction func-

tions that will be taken into account in our incomplete ortho-

gonalization scheme. The available computer memory for the

user is the upper limit of this number of correction functions.
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High-Speed GRAS Dynamic Frequency Divider Using

a Double-Loop Structure and Differential Amplifiers

MASAFUMI SHIGAKI, MSMBER, IEEE, TAMIO SAITO,

HIROTSUGU KUSAKAWA, AND HIROSHI KURIHARA

Abstract —New GaAs 2.0-8.0 GHz and 6.0-10.5 GHz dynamic

frequency dividers have been developed. These dynamic dividers have a

double-loop structure using a differential amplifier for high-speed and

stable operation despite supply voltage fluctuations. This structure oper-

ates from one voltage supply. An advanced WSi self -afigned gate process

technology (1.0 pm long gate) was used to improve the high-freqnency

characteristics of the FET.

I. INTRODUCTION

Satellite and multiplex communication systems need oscillators

of small size and high stability. High-performance phase-locked

oscillators can satisfy these demands, but require the develop-

ment of high-speed frequency dividers. Dynamic frequency di-

viders can operate at a higher frequency than static ones, because

their propagation delay time is shorter [1]–[3]. However, because

of the direct-coupled feedback circuit and the use of a common-

source FET for the inverter, they are sensitive to supply voltage

fluctuation, and cannot operate at variations of +10 percent.

Such conventional dividers require many power supplies.

This paper describes a newly developed dynamic frequency

divider that overcomes these problems without sacrificing speed.

This divider was constructed by connecting differential amplifiers

in a double loop. This structure provides stable operation insensi-

tive to supply voltage fluctuation, and moreover it achieves single

supply operation. W Si self-aligned structure gate process technol-

ogy was used to produce the IC for ease of mass production [4].

We have produced 2.0- 8.8 GHz and 6.0–10.5 GHz dynamic

dividers.

II. CIRCUIT DESIGN

The fundamental circuit configuration of the dynamic

frequency divider is shown in Fig. 1, The common-source inverter

was replaced by differential amplifier A. Also, the source fol-

lower buffer was replaced by differential amplifier B for more

gain. A schematic of the differential amplifiers is shown in Fig.

2(a). The diode over the load resistor regulates proper drain–

source voltage for high-level operation of the level-shift FET’s

(C, D). The self-biasing circuit was used to determine the input

dc level for proper operation as shown in Fig. 2(b). A two-stage

output buffer was adopted to retard reduction of the operating

frequency. The first stage used a small gate width buffer for
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