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A Spectral Iterative Technique with
Gram-Schmidt Orthogonalization

PETER M. VAN DEN BERG aND WALTER J. GHIJSEN

Abstract —Iterative schemes based on the minimization of the integrated
square error are discussed. In each iteration a basis function is generated
in such a way that it is linearly related to the residual error of the previous
iteration. A complete orthogonalization of all of these basis functions leads
to an optimal convergent scheme for some choices of the basis functions.
In order to reduce the computer storage needed to store all of the basis
functions, we present an incomplete orthogonalization scheme that still
yields an efficient computational method. In this scheme 3 limited number
of basis functions has to be stored. Some numerical results with respect to
some representative field problems illustrate the performance of the vari-
ous versions of the iterative schemes suggested here.

I. INTRODUCTION

The spectral iterative technique (SIT), developed by Bojarski
[1] and Ko and Mittra [2], has been applied to a wide class of
radiation and scattering problems. Convergence problems arising
in the spectral iterative technique, which are serious at times,
have been eliminated by van den Berg [3] by minimizing the
integrated square error in the boundary conditions on the perti-
nent radiating or scattering object. The convergence has substan-
tially been improved by using all available functions of the
previous iteration in the minimization procedure of each iteration
(CST3-scheme [4]). In each iteration of the iterative schemes a
basis function is generated in such a way that it is linearly related
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to the residual error of the previous iteration. MacKay and
McCowen [5] have suggested a full orthogonalization of all basis
functions in order to improve the convergence in an optimum
way. This requires all basis functions to be stored in the com-
puter; hence sufficient computer memory must be available. The
latter authors therefore suggest that a complete orthogonalization
may not be necessary and that the number of basis functions to
be orthogonalized can be limited to a small number. However, in
this case, the convergence can decrease dramatically after a
number of iterations.

In the present paper we discuss an incomplete orthogonaliza-
tion scheme where we take into account a limited number of
basis functions generated in the last few iterations; however, in
contrast to [S], we also use the appropriate estimate of one of the
previous iterations as a function to which all the relevant basis
functions have to be orthogonalized. This maintains the speed of
convergence. Further, in one of the most simple forms, the latter
scheme turns out to be equivalent to the contrast-source-trunca-
tion technique CST3 [4]. The latter is a truly iterative technique,
because it needs the functions of the previous iteration only.

IL

We consider a field computation problem in terms of an
integral equation of the form [4]

[ K= x)1(x) di' = g(x), (1)
where D is the domain of observation. Then, (1) is equivalent to
Kf=g, @)

Further, we introduce the inner product of two functions f and g
as (the bar denotes a complex conjugate)

(/8= [ (x)s(x) dx (3)

while the norm of a function f is defined as ||f]| = (£, f)/%. We
further introduce the characteristic function y,(x)=1 when
x €D, and xp(x) =0 when x € D', where D’ is the subdomain
outside the domain D of observation.

Introducing the spatial Fourier transform of a function f as
f=F { 1}, the Fourier transform of the operator expression Kf of
(2) can be written as the product of the Fourier transforms
K= F{K(x)} and F{x,f}; thus the operator expression can be
written as

THE OPERATOR EQUATION

when x € D

when x € D.

Kf=F Y KF{xpf}}. 4)

I11. ITERATIVE APPROXIMATION WITH GRAM—SCHMIDT
ORTHOGONALIZATION

In our iterative approximation we construct a sequence of
functions { f,, n=0,1.2,3, - - - } such that the norm of the resid-
ual in the operator eq. (2),

ERR, = (r,,r,}?, withr, =Kf, — g &)

decreases with increasing » in an optimum way. The procedure

starts with an initial guess f, with the associated residual r,. At
each step of the iterative procedure, we write

fn=fn—1+anfnc’ n=1,2,3,--- (6)

where, in each step, f;i is a correction function and where the

complex parameter o, is chosen such that the error ERR, is
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minimal. This results in a new residual:

rn=rn~1+aann( (7)
and the value of «, leading to minimal error
a, =~ (Kfy )/ IKAE (®)

In our iterative scheme, we generate in each iteration a basis
function ¢, in such a way that ¢, is linearly related to the
residual of the previous iteration, say ¢, = Lz, _, in which L is a
linear operator. For our relevant operator expression we now
take (according to the contrast-source-truncation techniques [3],

[4)
¢, = L, = F{[K] ' F{xpr 1} }. ()

This choice has been inspired by the SIT, suggested by Bojarski
[1] and Ko and Mittra [2], to solve the operator eq. (2) directly
without any error minimization.

One possible way is to take f = ¢,. Then, we observe that in
the nth iteration the approximate estimate f, can be written as a
linear combination of f; and fS=¢, (m=1,2,--,n) with
expansion coefficients «,,,

n
fn=f()+ Z X r:I

m=1

(10)

However, an optimum solution for the chosen values of f, and
" (m=1,2,.--,n) is arrived at by linearly combining these
functions with a number of unknown expansion coefficients as
n
fn = anOfO + Z anmfni (11)
m=1
and minimizing the integrated square error. Then, we end up

with a linear system of n +1 algebraic equations for these expan-
sion coefficients a,,,, (m=0,1, -+, n) [4].

nw

A. Complete Orthogonalization

For a given set of basis functions, optimal minimization of the
integrated square error in the nth iteration (leading to a linear
system of n +1 algebraic equations) is equivalent to a procedure
requiring that (6)—(8) apply while the following orthogonality
relations hold: {Kf¢, Kf,) =0, when n # 0. and {(Kf!, Kf,> =0,
when n # m. These orthogonalization requirements can be met
by constructing the correction functions f from the variational

functions ¢, as follows:

n—1

fnc=¢n_BnOf0— Z Bnmfr:’ n=12,3,-
m=1

(12)

where the coefficients B,, and f,, can be found from a
Gram-Schmidt orthogonalization procedure. This scheme is simi-
lar to that of MacKay and McCowen [5]; the only difference is
that we also require the orthogonality relation with respect to the
initial estimate. For a zero initial estimate both schemes are
identical. The disadvantage of this method is that for an increas-
ing number n of iterations we have to store the functions { Kf,,,
m=1,2,---,n} of all previous iterations.

B. Incomplete Orthogonalization

A less optimal procedure, but one involving only a limited
number of correction functions, can be developed by taking the
function Kf only orthogonal to a limited number of N func-
tions Kf;, which were obtained from only the N previous itera-
tions and which are orthogonal to the function Kf, arrived at in

49
the iteration with ordinal number ¢ = n — N —1. This scheme is

identical to that of (12) in the first N iterations and then
continues as

n—1

fi=¢=Bf— X

m=gqg+1

B 4
nmJm?

n=N+1,N+2,N+3,---

g=n—-N-1 (13)
where the coefficients B,, and B,, can be found from a
Gram-Schmidt orthogonalization procedure. Equations (6)-(9)
and (12), for n=1,2,---,N, and (13), for n=N+1,N+2,
N +3,-- -, constitute our iterative procedure for a limited num-
ber of N stored functions Kfj. This scheme differs from the
reduced scheme suggested by MacKay and McCowen [5] in the
requirement of the orthogonality with respect to f,. Omitting the
second term in (13) yields the reduced scheme of MacKay and
McCowen. However, this can influence the speed of convergence
negatively. How the convergence varies as a function of N will be
shown for two specific examples in the next sections.

C. The CST3 Scheme
When we take N equal to 1, (13) can be written as

fnc = ¢n - ﬁn,n‘zfn~2 - ﬁn,n*l nc——la n= 273747 . (14)
Using f,_, =f,_1 — a,_1f{_;, which follows from (6), we obtain

fnL = ¢n - Bn,n—2fn—1 _(Bn.nfl —a, n,n—Z)fnCAI (15)

and we end up with a scheme that is identical to the CST3
scheme of van den Berg [4]. Note that this is a truly iterative
scheme, because only the functions of the previous iteration are
taken into account. This scheme is originally derived by improv-
ing van den Berg’s CST and CCST scheme [3}.

IV. SCATTERING BY A STRIP

One of the canonical problems in electromagnetics and acous-
tics is the two-dimensional scattering of a time-harmonic (time
factor exp(— iwt)) plane wave by a strip (Fig. 1). In electromag-
netics, we consider the scattering of a TM-polarized wave (the
electric field vector is parallel to the edges of the strip). This
problem is identical to that of acoustic scattering by a soft strip.
For this problem, Ko and Mittra [2] have presented their spectral
iterative technique (SIT). We apply the iterative schemes of the
former section to solve the one-dimensional operator equation of
this simple example. We take the zero initial guess. To perform
the one-dimensional Fourier transforms numerically we use a fast
fourier transform (FFT) routine. All inner products over the
domain D (— a < x<a) of the strip are calculated numerically
by a simple summation of the function values at the sample
points.

After some normalization we have in the operator equation the
known function g(x)=1, x € D, and the Fourier transform of
the kernel K = (k2 — a?)"'/2. In order to cope with this branch
point in the numerical inverse Fourier transform, we introduce
slight losses in the embedding in accordance with the condition
of causality by taking a complex wavenumber k= (2n/A)
(1+0.01;), where A is the wavelength.

In the numerical computations we use a 4096-point FFT
routine. The number of sample points on the strip (of width 2a)
amounts to 81 and 35 when ka =5 and 1, respectively. In Figs. 2
and 3, we present the numerical values of the normalized error
ERR, /|Igll for ka=35 and ka =1. The solid lines represent the
results of the incomplete orthogonalization scheme for different
values of N, where N is the number of correction functions taken
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Fig. 1. Plane-wave scattering by a strip.
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Fig. 2. The normalized error ERR,, as a function of the number of iterations
for the scattering problem of a strip (ka = 5).

into account. The scheme for N =1 is the CST3 scheme [4]. The
broken lines represent the results of the incomplete orthogonal-
ization scheme if we enforce the value of §,, of the second term
of (13) to zero. In this latter case, the two schemes for N = 0 and
N =1 coincide with the so-called CST and CCST schemes [3],
respectively.

V. THE ELECTRIC FIELD PROBLEM OF AN INTERDIGITAL
TRANSDUCER

The analysis of the computation of the electric field excited by
an interdigital transducer in a multilayered structure [6] can be
reduced to the solution of a boundary integral equation of the
type given in (1). As a test configuration to demonstrate the
performance of the different schemes we consider the electro-
static field problem of a periodic configuration of two electrodes
having a prescribed potential of opposite polarity in vacuum [7].
In this periodic case, we have to use the periodic Fourier trans-
form. We again apply the iterative schemes to solve the one-
dimensional operator equation of this example. To perform
the one-dimensional Fourier transforms numerically, we use a
1024-point FFT routine. All inner products over the domain
D(L/2<x<3L/2and 5L/2 < x < 7L/?2) of the two electrodes
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Fig. 3. The normalized error ERR,, as a function of the number of iterations

for the scattering problem of a strip (ka =1).
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Fig. 4. Interdigital transducer of periodic strip electrodes
of width L in a spatial period of the configuration (Fig. 4) are
calculated numerically by a simple summation of the function
values at the -sample points. The number of sample points on
each electrode amounts to 256.

After some normalization we have in the operator equation the
known function g(x)=1 when L/2<x<3L/2, g(x)=-1
when 5L /2 < x < 7L/2, and the Fourier transform of the kernel
K=|a| !, a=27n/4L (n=0,+1,42,---). In order to cope
with the singularity o = 0 in the numerical inverse Fourier trans-
form, we put K(a)=0, for a=0. Subsequently, the average
value of the potential function K¢, obtained over the domain D
of the electrodes is enforced to zero (in view of the asymmetric
excitation). For a detailed description of the generation of the
basis functions ¢, and corresponding potential K¢, , we refer the .
reader to [7, table II}.

In Fig. 5, we present the numerical values of the normalized
error ERR, /||g|l The solid lines represent the results of the
incomplete orthogonalization scheme for different values of N,
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Fig. 5. The normalized error ERR,, as a function of the number of iterations

for the electric field problem of an interdigital transducer.

where N is the number of correction functions taken into account.
The scheme for N =1 is the CST3 scheme [4], [6]. The broken
lines represent the results of the incomplete orthogonalization
scheme if we enforce the value of 8, o Of the second term of (13)
to zero. In this latter case, the two schemes for N=0 and N =1
coincide with the so-called CST and CCST schemes [3], [7],
respectively.

To conclude we observe that a full orthogonalization of all
basis functions is in many cases no longer necessary when the
incomplete orthogonalization scheme is followed. It appears that
the CST3 scheme is a very efficient computational scheme, in
view of achieving the right balance between computer memory
and computer time. Another approach is one in which the
available computer determines the number of correction func-
tions that will be taken into account in our incomplete ortho-
gonalization scheme. The available computer memory for the
user is the upper limit of this number of correction functions.
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High-Speed GaAs Dynamic Frequency Divider Using
a Double-Loop Structure and Differential Amplifiers

MASAFUMI SHIGAKI, MEMBER, 1EEE, TAMIO SAITO,
HIROTSUGU KUSAKAWA, anp HIROSHI KURIHARA

Abstract —New GaAs 2.0-80 GHz and 6.0-105 GHz dynamic
frequency dividers have been developed. These dynamic dividers have a
double-loop structure using a differential amplifier for high-speed and
stable operation despite supply voltage fluctuations. This structure oper-
ates from one voltage supply. An advanced WSi self-aligned gate process
technology (1.0 pm long gate) was used to improve the high-frequency
characteristics of the FET.

1. INTRODUCTION

Satellite and multiplex communication systems need oscillators
of small size and high stability. High-performance phase-locked
oscillators can satisfy these demands, but require the develop-
ment of high-speed frequency dividers. Dynamic frequency di-
viders can operate at a higher frequency than static ones, because
their propagation delay time is shorter [1]-[3]. However, because
of the direct-coupled feedback circuit and the use of a common-
source FET for the inverter, they are sensitive to supply voltage
fluctuation, and cannot operate at variations of +10 percent.
Such conventional dividers require many power supplies.

This paper describes a newly developed dynamic frequency
divider that overcomes these problems without sacrificing speed.
This divider was constructed by connecting differential amplifiers
in a double loop. This structure provides stable operation insensi-
tive to supply voltage fluctuation, and moreover it achieves single
supply operation. WSi self-aligned structure gate process technol-
ogy was used to produce the IC for ease of mass production [4].
We have produced 2.0-8.8 GHz and 6.0-10.5 GHz dynamic
dividers.

II. Circult DesiGN

The fundamental circuit configuration of the dynamic
frequency divider is shown in Fig. 1. The common-source inverter
was replaced by differential amplifier 4. Also, the source fol-
lower buffer was replaced by differential amplifier B for more
gain. A schematic of the differential amplifiers is shown in Fig.
2(a). The diode over the load resistor regulates proper drain-
source voltage for high-level operation of the level-shift FET’s
(C, D). The self-biasing circuit was used to determine the input
dc level for proper operation as shown in Fig. 2(b). A two-stage
output buffer was adopted to retard reduction of the operating
frequency. The first stage used a small gate width buffer for
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